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The deuteron form factor is calculated in a one-pion-exchange (OPE) approximation using single-variable 
unsubtracted dispersion relations in the squared-momenturn-transfer variable. As a first step, the imaginary 
parts of the form factors are presented in terms of the four invariants of the deuteron-nucleon (d-N) vertex. 
The resulting equations are compared in detail with similar expressions obtained from the Jankus potential 
theory, and a clear understanding of the precise way in which the d-N invariants play the role of the deuteron 
wave function emerges, enabling us to obtain relativistic wave functions. This comparison also shows the 
presence of new relativistic terms not included in the Jankus results (in particular, a new term appears in the 
magnetic moment). Then, the imaginary parts of the d-N vertex invariants are calculated numerically. In 
this calculation the OPE contribution in its anomalous region is calculated exactly, while the contributions 
above the normal threshold are obtained by an educated guess based on sum rules which the invariants are 
assumed to satisfy. Finally, using these results, the form factors are calculated numerically. With the as
sumption of unsubtracted dispersion relations, it is necessary to assume only the charge and mass of the 
deuteron, and the pion-nucleon coupling constant, in order to completely determine the form factors. The 
numerical results for the magnetic and quadrupole moments agree with experiment to within 2%; the in
state probability is 5.5% but is not very reliably determined, and the other results, while less good, are still 
quite reasonable. 

1. INTRODUCTION 

THIS paper presents the numerical results of a rela
tivistic calculation of the deuteron electromag

netic form factor using single variable unsubtracted 
dispersion relations and coupled unitarity equations. 
The philosophy and foundations of such a calculation 
have been discussed in an earlier paper1 (which we shall 
hereafter refer to as I) , and the basic equations which 
we employ were derived there. 

The calculation is based on the three diagrams shown 
in Fig. 2. Our central approximation is to assume that 
the imaginary parts of the deuteron form factors are 
dominated by the discontinuities calculated from these 
diagrams in their anomalous regions (region between 
the anomalous and normal thresholds). Then, to allow 
for the effect of higher thresholds approximately we 
employ certain sum rules [Eqs. (3.28) and (3.29)] which 
can be derived on the assumption that the deuteron 
form factors satisfy unsubtracted dispersion relations, 
and which are suggested by a comparison with potential 
theory. In addition, we assume that the pion-nucleon 
coupling constant is given by 

g 2 /47T=14. (1.1) 

When all of these ideas are put together, we are left with 
only one free parameter, which is adjusted to yield the 
correct deuteron charge. The P-state probability, mag
netic moment, quadrupole moment, and momentum 
transfer dependence of the three form factors are thereby 
completely determined. The numerical results are in 

* Parts of this paper are based on a thesis submitted to Princeton 
University in partial fulfillment of the requirements for the Ph.D. 
degree. Research supported in part by the U. S. Office of Naval 
^Research 

1 F. Gross, Phys. Rev. 134, B405 (1964) (hereafter referred to 
as I). This reference contains some other relevant references. For 
errata in I see Appendix E of this paper. 

reasonable agreement with experiment. We conclude 
that if one is careful the calculation contains uncer
tainties of not more than 5% at low momentum transfer, 
and the agreement with experiment is well within these 
uncertainties. Furthermore, it seems that even if one is 
relatively crude the diagrams in Fig. 2 yield results 
within 10 or 15% of the experimental values. These 
remarks are explained in greater detail in Sec. 5, and 
the specific numerical results are given in Tables I I I 
and IV. 

I t has become customary to assume that dispersion 
theory calculations meet with little numerical success. 
Our experience suggests that for certain problems (i.e., 
those dominated by anomalous thresholds) one need not 
be so pessimistic. While the results are still a long way 
from the 1% accuracy that one dreams of, there seems 
to be reason to entertain a feeble hope that additional 
work may place one close to this goal. The next job to 
undertake is an estimate of the explicit three-pion con
tribution,2 and to calculate the deuteron-nucleon vertex 
more carefully. In addition one needs to understand 
more about some of the other contributions discussed 
in I. Many of these can be explicitly calculated; it may 
be possible to prove that many are small at low mo
mentum transfer. 

The partial success of dispersion theory in this calcu
lation is perhaps not surprising. First, it should be borne 
in mind that the objective is not actually to calculate 
the deuteron form factor completely, but only to express 
it in terms of the isoscalar nucleon form factor, a 
simpler job. In addition, the loosely bound structure of 
the deuteron means that much of its structure is largely 
kinematic or due to one- or two-particle exchange and 
hence is amenable to direct attack. 

In spite of this limited success the theory is not yet 

2 B . M. Casper (private communication). 
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strong enough to make very meaningful estimates of the 
neutron form factor from the experimental data. The 
reason for this is simple enough; in order to extract any
thing from the experimental data a very accurate theory 
is needed. 

Let us review this point briefly. One recalls that the 
relativistic differential cross section for elastic electron-
deuteron scattering is3 

da da 

dQ dQ. 

— 

N . S . 

5 

6M2 

I 18M4 

1+2(1 —J tan2(6>/2) 
\ 4AfV 

GM
2(s)\, (1.2) 

where s= q2 is the square of the four-momentum transfer; 
M is the deuteron mass; and Gc, GQ, and GM are the 
charge, quadrupole moment, and magnetic-moment 
form factors of the deuteron. The differential scattering 
cross section for point particles is (in the laboratory 
system): 

da 

dQ 

/ e2 \2 cos2(0/2) 

o/ sin4( \2E 0 Ke/2) 

x-
Zl+(2Eo/M)sm2(d/2n 

(1.3) 

where Eo is the energy of the incoming electron, 9 the 
laboratory scattering angle of the electron. 

Experimentally, one measures the ratio 

(1.4) 

which is compared with a theoretical ratio 

r = ll+Fn(s)/Fp(s)3Dc(s)+R(s), (1.5) 

where Fn and Fv are the neutron and proton form factors 
and R is a "nonadditive" correction which one is not in 
the habit of including but which can be expected to be, 
say, of the order of 5% of Dc. If, in addition, Dc is not 
to be better than 5% (as is the case in this paper but 
probably not the case with a good potential theory—see 
Sec. 5), and r is known to only 2% experimentally, then 
we have 

l+Fn(s)/FP(s)^(r/Dc(s))(l±0.02±0.l0), (1.6) 

where the second error is the combined theoretical error. 
However, knowledge of 1+Fn/Fp to only 12% cannot 
be expected to yield much information about Fn, when, 
for small s, Fn^0.1Fp. At larger momentum transfer, 
where Fn~Fv we are no better off, because then the 
contribution R is more important and at the moment 

3 M . Gourdin, Nuovo Cimento 28, 533 (1963). Note however 
that the form factor DMM presented in this reference differs from 
that presented in Refs. 5 and 6 and in this paper [Eq. (2.8)]. 

FIG. 1. The deuteron-photon vertex, or 
the deuteron form factor in (a) the scat
tering channel (s<0) and (b) the an
nihilation channel (s>4M2). 

(b) 

we have no knowledge of its size. For these reasons we 
shall refrain from presenting our own calculations of the 
neutron charge form factor at this time. 

The form factors that we discuss in this paper, Gc, 
GM, and GQ are defined in terms of three other form 
factors, Gi, G2l and G3. The deuteron scattering form 
factor is 

G>(s) = (2D°2D/Qy'2(D' | j*\D) 

~e\G1(s)(^^)d^+G2(s)l^^q)-^^-q)-] 

-&z(s) d»\ 
2M2 J 

(1.7) 

where £ and £' are polarization vectors for the incoming 
and outgoing deuterons of momenta D and Df, respec
tively, (see Fig. 1) 

£ / 2 = - l 
£ 2 = - l 

and dv^D^+D*, q^D^-D*. The form factors Gc, 
GM, and GQ are defined as: 

GcW = G 1 (5)-(V6if«)GQW, 

GM(s) = G2(s), (1.8a) 

GQ(s) = d(s) - G2(s)+ (l-s/m2)Gz(s). 

These form-factor combinations are introduced because 
they can be shown3,4 to reduce in their nonrelativistic 
limits to the nonrelativistic form factors conventionally 
used and first introduced by Jankus.5,6 Their names 
derive from this fact, and their static values correspond 
to the charge, magnetic moment, and quadrupole 
moment of the deuteron. More specifically, we have3,4 

G o ( 0 ) = l , 

GM(0) = 2MMd=M, (1.8b) 

GQ(0) = iPQd^Q, 

Ph.D. thesis, Princeton University, 1963 4 F. Gross, 
(unpublished). 

5 V. Z. Jankus, Phys. Rev. 102, 1586 (1956). 
6 N . K. Glendenning and G. Kramer, Phys. Rev. 126, 2159 

(1962). 
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where nd and Qd are the deuteron magnetic and quad-
rupole moments, and fj, and Q are these moments in 
units of e/2M and e/M2, respectively. 

For calculational purposes it is more convenient to 
work with the annihilation form factor which can be 
obtained from the crossed reaction shown in Fig. 1(b). 
To obtain this we let Df •—» — D, £'* —»77* and change 
the sign of the over-all amplitude. Hence, we obtain: 

&(s) = (2D°2D°)1/2(01 r IDD) 

= e{G1(sXV^^-G2(s)l^(V^q)-^a-q)l 
-G*(s)l(ri*-q)(l;.q)/2M*y>}, (1.9) 

where d=D—D and now q=D-\-D. The form factors 
describe the annihilation channel when s > 4 M 2 and the 
scattering channel when s<0. 

In Sec. 2 we review the Jankus5 nonrelativistic results 
for the deuteron form factor, and cast these into a form 
which facilitates comparison with the relativistic theory. 
This comparison is extremely instructive, and provides 
motivation for the use of the sum rules we shall intro
duce, but is in no way essential to the calculation. Then, 
in Sec. 3 we present the results of the calculation of the 
form factors based on the diagrams shown in Fig. 2. We 
express these results in terms of the four invariant func
tions of the deuteron-nucleon (d-N) vertex, first calcu
lated by Blankenbecler and Cook.7 I t is observed that 
when one writes the equations in terms of certain com
binations of these d-N vertex functions, the results 
have a very similar structure to those of Sec. 2. This 
enables one to interpret the various terms present and 
to observe in detail how the d-N vertex functions play 
the role of the deuteron wave function. We then discuss 
in some detail the relationship between a potential 
theory and a relativistic theory, including the unique
ness of our identification of combinations of d-N vertex 
invariants with the deuteron wave function. Because of 
the importance of the d-N vertex, Sec. 4 is devoted to 
a calculation of it in the one-pion-exchange approxima
tion. At this time we also impose certain sum-rule con
ditions on the vertex functions. Finally in Sec. 5 we 
present detailed results of numerical calculations, and 
summarize our conclusions. The reader who is not 
interested in the details of the calculation may still find 
some useful remarks in Sec. 5. 

We have included five appendixes. Appendix A con
tains a summary of conventions. Appendixes B and D 
contain detailed results of the calculations of the form 
factors and the d-N vertex functions, respectively, 
while Appendix C contains mathematical material to 
establish a uniqueness argument developed in Sec. 3 
and discussed in Sec. 5. Appendix E contains a list of 
errata in I . 

2. POTENTIAL THEORY 

In this section we will cast the Jankus potential 
theory into a form which will be suitable for a detailed 
comparison with the results of dispersion theory ob
tained in the next sections. 

The potential-theory results are well known. We can 
write the deuteron wave function in terms of nucleon 
Pauli spinors: 

$d(r) = Xntyd(r)Xp, (2.1) 

where Xn and Xp are nucleon spinors. The matrix ^d(r) is 

1 
**(*> 

(4TT) 1/2 

u(r) 1 w(r) 

X 

-ft 

tf(a.r)(r.O 

(—n—°vh' (22) 

where <r are the Pauli spin matrixes and ^ is the deuteron 
polarization vector 

f t i= (=Fl /v5 , - * / > £ , 0 ) , 

?= (0,0,1). 
(2.3) 

The S- and D-state radial wave functions are u and w, 
respectively. The constants have been chosen so that 

$d(r) I *d*r= / t r a c e { ^ ( r ) ^ ( r ) } ^ V 

• / 
«/0 

= / [u2(r)-\-w2(r)']dr. (2.4) 

The deuteron form factors can be expressed in terms 
of the radial functions u and w. Introducing the proton 
and neutron charge and magnetic form factors8 Fcp(<l2)? 

FM
v(sF), ^cn(q2) , FM

n(<l2), the first-order current 
density is commonly written (in the Breit frame) as 

f=e{Fc^yvx,2+Fcn{^)e-i^t,2}, 
^ = _ ^ / ^ { / ? c P ( q 2 ) ^ q - r / 2 V f c _ ^ c n ( q 2 ) e - i q . r / 2 V f c } 

^ +ei/2ni{FMp(<l2)(v x q) V*"r /2 

^ + ^ ( q 2 ) ( * x q ) V - ^ r / 2 } , * = 1 , 2 
i 3 = 0 . (2.5) 

Here m is the nucleon mass. The form factor is then 

^ ( q ) = < ^ / ! r | $ d ) (2.6) 

and becomes 

&*{$=*{&-QGCm 

+ [(r-q)(?-q)-k2a-r)]^(q2)/2M2}, (2.7) 

4m 

7 R. Blankenbecler and L. F. Cook, Jr., Phys. Rev. 119, 1745 
(1960). 

8 The quantities .F(q2) are assumed to be the nonrelativistic 
counterparts of F(s) introduced in Eq. (3.3). 



D E U T E R O N E L E C T R O M A G N E T I C F O R M F A C T O R . I I B143 

where 

Gc(q
2) =^c(q 2 ) I tu2+w22Jo(^~\dr, 

1 r00 / w2 \ /^f\ 
Ge(q2)=^c(q2)-

6v2lf2 

As,it turns out, the.choke of gy as theD-state weight 
function is more appropriate than X to a comparison 
with the results of Sec. 3. 

If the representations (2.9) are substituted into Eqs. 
(2.8), an interesting form for the form factors emerges. 
To obtain this, it is necessary only to make use of the 
following identity valid for integral n: 

/

00 - 0 0 - 0 0 , ™ . v 

dr dcr d</<rW>*jJ-)p((r)p(<r') 

= ( - l ) » / — / da da' 
Jn«> (q2+x) X1/2 J a J a 

r x i / 2 

GM(q2) = ^c(q2)^/c(q2)+^(q2)Z)MM(q2), 
3 r r /^\ / ^ M (2-8) 

DM
M(q2) = 2f (u*-W)Jo(^-\dr 

r™ / w2\ fqr\ 

here jo and j'2 are the usual spherical Bessel functions, 
g= |q|, and 

Fc=Fc*+Fcn, FM=FM
p+FMn. 

We wish to cast these well-known results into a differ- identity for n=Q and 1, and successive integrations by 
ent form. To this end we recall that if the potential is a parts, we eventually obtain the following integral results 
superposition of Yukawa wells, then the wave functions for the form factors: 
can be written in the following form: „ , oX „ , 

, , x Fc(q
2) r dX 

Gc,Q(q2) = / Acx 
7T ^16a 2 q 2 +X 

! ( q 2 + x ) x l / 2 

f2(*+<r') 

X 

-1 /2(*+<r')\ 

JM-^"/^^0, (2,11) 

where j%n and Pin are spherical Bessel functions and 
Legendre polynomials of order In. With the use of this 

1 r00 

u(r) = / /i(or)<r"tf<r, (2.9a) 
(27r)W a 

1 r r 3 3 i 
w(r)= / ^ x W e - H 1 + - + AT, (2.9b) 

(27r)1 / 27a L or (or)2 J 
1 f00 

= / \(<r)er*rd<r, 
(2irY'2Ja 

s(x) , 

D* f(q2) — 
1 /•» dX 

- / AM
G>* 

7r./i6«2q2+x 

(2.12) 

'(x), 

(2.9c) 

where a2 = me, and e is the deuteron binding energy, 
Integration by parts gives 

where if 

£=-
l 

A(<r) = o-2gi((r)+3cr / gi(y)dy, 

<T2 (TiJa 

2(x)1/2 

and introducing 

drj I drjdl 
r x i / 2 

\(<r) 3 f (2.10) 
yX(;y)<f;y. 

/(*)= 
Mvm) 

in 1/2 

L 2 

g(v)z 

-„ l /2_=l /2 

gi(V/2) 

2u 1/2 

(2.13) 

(2.14) 

we have 

32 
A e(x)=£ | f(v)f(v)+—g(v)g(v)\ x2-8x(u+5?)+16(^2+v*)+-nv 

128 3 J 
3V2 8ij 24rj 0?-J?)2l 

^(x) = M2£ — fivkm 3+ +48-
16 X* X X 

9 
g(v)g(v) 

256 

9 r 
^jr°(x) = E —g(v)g(v)\ x2~12x(>;+55)+480/2+7f)+32^-64-

512 L 

/n2+ri2\ 32 ri7] (v+v)(v—v)2l 
X-4(u+fl)-16( +64 

\ x / 3 x x2 J 
('/+'?)('?—^)2 

• ! • 

(2.15) 

3V2 
AMM(X) = 1:\ 2f(v)M fMg(v) 

32 
XH—77 — 877+I6 
- 3 x J 

9 

256 
gMg(*?) : 
1 L 

20 
Xz X1 

16 
(97+77)-) {yf+rf)-\ i)r\ 

32 64(r7+7?)()7-77)2 

• ] } • 
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Observe that the above expressions bear a remarkable 
resemblance to dispersion integrals, with the imaginary 
parts given by the A's. This will enable us to make an 
easy comparison of these potential theory results with 
the results obtained in Sec. 3. 

Note that in order that these integrals be finite it is 
necessary and sufficient that, for arbitrarily large N, 

L 
L 

f(rj)dy]<constN1/2
} 

2 const 
g(v)dr]<~— . 

]\n/2 

(2.16) 

These minimal conditions will be referred to as the (A) 
conditions. The physical significance of these conditions 
is apparent from Eqs. (2.8) and (2.11); they are the 
necessary and sufficient conditions that the S and D 
wave functions be normalizable. Note that the condition 
on g(rj) is relatively stringent, a reflection of the fact 
that the D state has been written as a superposition of 
wave functions each of which is itself not normalizable. 

In practice, we may wish to require that the 5- and 
Instate wave functions be zero at the origin. This 
means that 

/•oo 

/ f(V)dr, = 0, 

/ vgMdr]= / g(v)dv=Q> 
J a2 J a2 

(2.17) 

These will be referred to as the (B) conditions. 
The (B) conditions represent the simplest of a general 

class of restrictions which we would impose on the wave 
functions if we believed that they should demonstrate a 
repulsive core behavior. A repulsive core would express 
itself in the requirement that the first L derivatives of 
the wave function at r=0 are zero. In terms of/ and g, 
this becomes 

f r/2f(v)dv=o 
J a2 

/ g(r})dy1= / 7 ?^ / 2 + 1>g(77)^ = 0 n^l 
J a2 J a2 

w = l , 0 , • • • £ 

(2.18) 

Note that the first derivative of the D-state wave func
tion is automatically zero. 

To facilitate the comparison of expressions (2.12) 
with relativistic theory and also to focus attention on 
the significant parts of these expressions at low mo
mentum transfer we isolate that part of the expression 
which is zero at q2 = 0. These parts cannot contribute to 
the deuteron static moments, and furthermore will give 
a low contribution for small q2. 

By integrating by parts it is possible to show that a 
number of the terms in (2.12) are zero at q 2 =0, inde
pendent of the structure of the weight functions / and 
g, so long as the (A) conditions hold. To show this it is 
sufficient to consider the integrals: 

dx r°° dx r00 r°° 
/ — drj drj 

Jua'X^Ja* J a2 

Mi,v)P(xivm 
f x 1 / 2 "I 

v
1/2-fj1/2 \ 

r dx r™ r00 

/ / drj drj 
Jl6a2X7/2 J a2 J a2 

(2.19) 

rxm 

Mr),y)Q(x;r)r))d\ 

where P and Q are third-order polynomials in x, V, V, 
and A(rjyf)) is an arbitrary function subject to the 
condition 

drjA(rjyr]) = 0. 

The A represents the products g(rj)f(ff) or g(rj)g(rj). By 
integrating (2.19) by parts one can find the most general 
polynomials P and Q which will always guarantee that 
the integrals (2.19) are zero. For P we need only the 
class of polynomials symmetric in rj and f)\ 

P=ax
3+2^(77+77)x

2+(16a+16&+2c)(7?
2+772)x 

+((160/3)a+32b+ic)7jrjx 

-32(4a+3b+lc)(ri+f})(v-rj¥, (2.20) 

where a, b and c are arbitrary constants. The poly
nomial Q is 

Q=ax8+2b(r)+r))x2+2c(ri-ri)x2 

+ (ma-m+id)(ri>+r)*)x 

-(48c+id)(r1z-rjz)x+(ma-96b+2d)r]r)x 

+ (160b-6±0a-(S/3)d)(r}+rj)(r1-rjy 

+ ( 1 0 / 3 ) ( 4 8 c + f ^ ) ( 7 7
3 - 9 7 3 + 3 ^ 2 - 3 ^ ) , (2.21) 

where again a, b, c, and d are arbitrary constants. We 
wish to call attention to five special cases of these 
polynomials: 

i ) i = x [ x 2 - 8 ( ^ + 7 ? ) x + 1 6 ( ) ?
2 + ^ ) - 3 2 ^ ] , 

P 2 = x [ x 2 - 1 2 ( t ? + ^ ) x + 4 8 ( ) ?
2 + ^ ) - ( 1 6 0 / 3 ) ^ 

-64(V+fj)(V-f}')/xl, 
Pz=xLx2-(20/3)(v+fj)x+(16/3)(^+^) 

- . ( 2 2 4 / 9 ) ^ + ( 6 4 / 3 ) ( ^ + ^ ) ( 7 7 - ^ ) 2 / x ] , 

ei-X2Cx+(4/15)(77+^)~16()?
2+772)/x 

-32(yS)Vv/x+6Hrj+fj)(r,-f}y/x^y 

e2=X2Cx+(8/3))7-87j+16(r?
2+7?2)/x-327?77/x]. 
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In terms of these, the form factors can be written in 
another form. Making use of the identity 

/ / ( x ) = / dXf(X)-q2 

•/16a2q2+X JlSa2 J16a2 

00 dxfix) 

q2+X 

we have 

GcM) = 
Fc(<e) dx 

-*C,Q(X) 
7T Jna2q2 + X 

q2Fc(q*) r dx 
/ ——bc ,Q{X) , 

TT ^16a2Q2+X 

1 
DM

c'M(q2) = ~ 
dx 

(2.22) 

Wi6«2q2+x 
~aM

c>M(x) 

q2 r dx 

bua-M(x), 
TT J l 6 a 2 q 2 + X 

where now [recalling Eq. (2.13)]] 

^c(x) = Jl{f(v)f(v)+g(v)i(r))vv}, 

3 
bc(x)=E g(v)g(v)Pi, 

128X 

0MC(X) = Z Mv)g(v)vv, 

9 
&MC(X) = E g(l)g(v)P*> 

512X 
aM

M(x) = i:{2mf(r])-~g(fj)g(rj)r]fj} , 

f 3V2 9 g(rj)g(v) 
**"(*) = £ Mg(n)Q* Pt 

I 32X2 256 x 

(2.23) 

#Q(X) = E 
3M2^ 

16 

r 24r? 8T? (^7~i7)2" 
•/0j)«6?)[3 +-+48 — 

X X X" 

rfif +i^2^)g(i?)[f(^+?)-(24/S)-J[ , 

9Jf2 

^ Q ( X ) = E gO?)gM(?i. 

256X2 

Let us turn now to the relativistic case. 
3. THE RELATIVISTIC FORM FACTORS 

In this section we turn our attention to a calculation 
of the relativistic deuteron form factors as determined 
from the diagrams shown in Fig. 2. We shall rely on the 
results of I, and write down the contributions from the 
three diagrams by inspection. First, however, we must 
introduce our notation for the nucleon form factor and 
d-N vertex. 

FIG. 2. The three diagrams 
on which this calculation is 
based. The double solid lines 
represent deuterons or anti-
deuterons, the solid lines are 
nucleons or antinucleons and 
the dashed lines are pions. The 
heavy solid lines represent off 
mass shell nucleons or anti
nucleons of mass u or u re
spectively. Parts of (b) and 
(c) are circled to emphasize 
the intimate role of the deu-
teron-nucleon vertex in the 
problem. The same key is em
ployed in Fig. 3. 

(a) 

Since the deuteron has isotopic spin-zero, only the 
isotopic-scalar nucleon form factor can contribute to the 
amplitude, and this can be written9 in terms of the con
ventional charge and anomalous magnetic-moment form 
factors as 

Fv(s) = (4w°n°)1/2(01 j* | nn) 
= ev(n)[Fi(s)y^- (iF2(s)/2m)a»v(n+n)v~]u(n), 

(3.1) 

where aliV=^i(ylAyv—yvytl) and m is the mass of the 
nucleon. The static limits of these invariants are well 
known: 

Fi(0) = l , 

F2(0) = -0.12. 

A more convenient form of this amplitude for calcula-
tional purposes is 

F*(s) = ev(n)ZFM(s)yfM- (F2(s)/2m)P^~]u{n), (3.2) 

where P=n—n. The invariant FM, the magnetic-
moment form factor, is 

FM(s) = F1(s)+F2(s). (3.3a) 

Finally, we shall ultimately be interested in expressing 
our results in terms of the charge and magnetic-moment 
form factors. The charge form factor is 

Fc(s) = F1(s)+(s/4m*)F2(s) 
= FM-(l-s/4:m2)F2. (3.3b) 

The deuteron-nucleon vertex for an off-mass-shell 
nucleon of momentum p and a mass-shell nucleon of 

9 See, for example, S. D. Drell and F. Zachariasen, Electromag
netic Structure of Nucleons (Oxford University Press, New York, 
1961). 
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momentum N (see Fig. 3) can be written in the form: 

T(u,pN) = (4:D°N°y/2u(p)(N \ fp\D) 
= -u(p)T«(u,pN)eu(N)i:a, 

Ta(uypN) = F\u)ya+(G,(u)/m)^(N-py+(p-m)/m 
X{H'{u)y«+(I'(u)/ni)h{N-py}, (3.4) 

where p=D—N and u=p2, and our conventions per
taining to the Dirac equation are given in the Appendix 
A. We shall use the notation F0=Ff(m2) and GQ=<7(m2) • 
This vertex plays the roll of the deuteron wave function 
as discussed by Blankenbecler and Cook7 and in I. In 
the present section we are interested only in displaying 
the form factors in terms of the four invariants F'\ G', 
Hf, and I', and demonstrating how they play the role 
of the weight functions for the wave functions. In Sec. 4 
we shall calculate the invariants in order to obtain a 
relativistic description of the deuteron wave function. 

It is convenient to obtain the expression for Eq. (3.4) 
in an alternative form: 

{Wm^(N\f^\D)eu{p) 
= -u(N)A"(u,Np)eu(p)aa, (3.5) 

where now the off-mass-shell nucleon is sitting to the 
right. To obtain Aa in terms of T" we take the transpose 
and observe that 

u(p)eAaT(u,Np)u(N)=-u(p)Ta(u,pN)Qu(N), 

where we have used (3r= — (B. Hence 

A«(u,Np)=- ev^fapN)®-1 

= F\u)y«+(G\u)/m)h{p-Ny-lH'{u)y« 
+(V(u)/m)Kp-Nyjp+m)/m. (3.6) 

Note that the terms involving Ff and Gf are symmetric, 
while those in H' and V are not. 

Let us also obtain the expression for the charge con
jugate amplitude 

(W°Noy/2(N\f^\D)v(p) 
= -v(N)eO«(u,NpHP)va*, (3.7) 

where v\ is the 4-polarization of the antideuteron. Charge 
conjugation requires that 

v(N)eOa(u,Np)v(p)r)a* 
= uc(N)A-(u)Np)euc(P)^c^ (3.8) 

But because 
uc(N)=-ev(N), 

we have 
0«(u,Np) = A"(u,Np). (3.9) 

What we want is the amplitude T for an antideuteron 
and nucleon coming in, and a virtual antinucleon of 
mass u going out. This can be obtained from Eq. (3.7) 
by an application of the substitution law, justified by 
crossing symmetry. We replace N by — N, and interpret 

v(—N) as u(N). Hence, 

T=r]o*u(N)eAa(uJ ~-Np)v(p). (3.10) 

The imaginary part of the deuteron form factor calcu
lated from the diagrams shown in Fig. 2 can now be 
written down as a trace over products of y matrices. 
Our expression is an immediate generalization of Eqs. 
(3.22) and (3.26) in Ref. 1. 

ImO(s) = / dul duW(s,u,u) 
8[>(4Jfcf2-*)]Wm* Jw* 

Xd{s-4:[(a*+Uu-tn2))1/2 

+ (a 2 +K^-^ 2 ) ) 1 / 2 ] 2 } , (3.H) 
where 

/•27T 

W(s,ti,u)= ( l /27r)1 / 2 / dtp 
Jo 

Xtr&ce{(p+m)TeAa(u, —p,n)(h—m) 

X(FMyfi-(F2/2m)P^ 

X{n+m)Y^u,np)Q)^U (3.12) 

and Aa, T& have already been introduced in Eqs. (3.4) 
and (3.6) except that it now must be understood that 
just as in Eqs. (3.26c) of Ref. 1 the actual combinations 
of the d-N invariants which appear are 

I m F ^ ) 
Ff(u) -> F(u) = F0d(u-m2) e(u-u0), 

ir{u—m2) 

lmG'(u) 
G,(u)->G(u) = G0d(u-fn2) 0(«-«o), (3.13) 

ir(u—m2) 

IVin) -> H(u)=-(ImH\u)/Tr(u-m2))6{u-Uv), 

I'(u) -> /(«)= -(Imr(u)/ir(u-m,2))d(u-uQ), 

and 
u0=m2+2ix(fx+2a). (3.14) 

The reader is cautioned not to confuse the new F, G, 
H, and 7" which enter Eq. (3.12) and are given by (3.13) 
with the original d-N invariants introduced in Eq. 
(3.4). This substitution has the advantage of saving us 
the trouble of redefining Aa and 1^. 

Although these equations were only shown in I to be 
true in the anomalous region of the d-N vertex func
tions (hence the upper limits of (ra+M2) on the u and u 
integrations in I) it is a trivial matter to see that Eq. 
(3.11) is valid for all u and u provided only that 
^<(^1/2+iZ1/2)2; uu<M2—m2 (i.e., in the anomalous 
region of the energy variable s). Of course, if u or 
u>(m+n)2, the imaginary parts introduced in Eq. 
(3.13) no longer refer to the imaginary parts in the 
anomalous regions of the d-N vertex. In what follows 
we shall assume the validity of Eqs. (3.11) and (3.12) 
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for all u, u, and s. Since we will ultimately approximate 
the imaginary parts for large s anyway, this approxima
tion has no additional effect on the results. 

In the scalar case, the <j> integrations were trivial. Here 
they must be carefully done, and it must be recalled that 
the integrations are in the over-all center-of-mass system 
with c o s 0 = D « n / | D | | n | evaluated from the equation 
(D—n)2~m2. (See I for details.) The <j> integrations are 
discussed in Appendix B. 

The trace W can be immediately simplified to 

1 f 
W(s,u,u) = — d<t>tr&CQ{(p—tn)Aa(n—m,) 

2TTJ 

X(FMy»-(F2/2m)P^)(n+m)T^r]a
:'^ (3.15) 

and the traces taken. When the algebra is performed, 
and angular integrations completed, one can separate 
the results into the three invariants Gi, G2, Gz and then 
form the linear combinations G<?, GM, and GQ. This 
rather tedious algebra is sketeched in Appendix B. 

The results can be expressed in terms of five functions 
of s: 

Gc(s) = Fc(s)Dc(s), 

GM(S) = FC(S)DM
G(S)+FM(S)DM

M(S) , (3.16) 

GQ(S) = FC(S)DQ
C(S)+FM(S)DQ*(S). 

I t is convenient to separate the D functions into parts 
which are explicitly zero at s = 0 and other terms of 
special significance in the static limit: 

s r bc(s')ds' 
Dc(s) = Ps(s)+PD(s)+- / , 

ir J ua* S*(s'—s—ie) 

bM
c(s')dsf 

f(s'-s-ie) 

DM
M(S) = 2PS(S)-PD(S)+RM(S) 

s r bM
c{sf)dsf 

DM
c(s)^PD(s)+- — - , 

T Jua'S (s —s—ie) 

)+RM(S) 

s rx bM
M(s')ds' 

+~ / - > 
TT Ji6a*s'(s'—s—ie) 

s r bQ(s')ds' 
DQc(s) = PQ(s)+RQ(s)+- — - , 

te J i6<»2 s (s —s—ie) 

1 rx c 
DQ

M(s) = - / -

(3.17) 

aQ
M(s) 

where Ps and P& are the S- and Z>-state probabilities, 
PQ is the contribution to the quadrupole moment which 
has the same form as that given in Sec. 2, and RM and 
RQ are additional (relativistic) terms not found in the 
potential theory results of Sec. 2: 

1 r as>D>Q{s')dsf 

PS,D,Q(S) = - / — ; — , 
7T J16a2 S —S—ie 

(3.18) 
1 /•• aB

M-%s')ds' 
RM,Q(S) = - / — — . 

ir Ji6«2 s —s—ie 

(3.19) 

Our results for the a's and b's are more directly com
parable with Sec. 2 if we define the new invariants 

&(u) = F'(u)+5C'(u)-((u-m2+2a2)/6m2)Q'(u), 

<3'(u) = G'(u)-%F'(u)+l3C'(u)+W(u), 

3Z'(u) = (,(u-m2)/2m2)H'(u), 

8'(u) = ((u-m2)/2m2)I'(u), 

and, as we did in Eq. (3.13), we introduce 

5(u) = 508(u-m2)-(Im$'(u)/w(u-m2))9(u-u0), 

3C(u)= -(ImH'(u)/2irm2)d(u-u0), (3.20) 

and similarly g and 8, respectively. Finally, we wish to 
have it understood that if these functions appear with 
1) or rj as argument, we really mean 

^(r,) = ^(m2+2(r,-a2)). 

There will be no confusion with this convention because 
the functions (3.20) will always appear as functions of 
u or JJ only. Finally, the a's and b's can be written in a 
compact form if we introduce: 

16m2 r°° r 
5 > / dr, <fij0O1 / 2->?1 / 2-5?1 / 2], 

8 [ s (4M 2 -* ) ] 1 / 2 . / t t
2 A 2 

(3.21) 
u—mi=2(r)—a2), 

u—m2=2(^—a2). 

Hence, 

as(*) = EffOj)SF(i,), 

aD(s) = 2Z(2/9m%(v)S(v)r,v, 

aQ(s) = 2Z{Z(vMv)(§+4v/s-Urj/s+24(r,-rj)2/s2) 

+ (2/15m2)mS(v)(v+V-Sr,v/s)}, 

aR
M(s)=2ZiS(v)(v/™2Xz(v)+Mv)-mv)) 

-(3C(i j)+i»(l}))2ff( i , ) ]( l -4( , -f l )A)-iaO(5), 

aR
Q is)=E(3e(9)3e(i?) -$(vMv)) 

X(-h+Ws-Hr,-H)2/s2)-iaQM(s), 

aQ
M(s) = 2Zmv)-nv)XHv)+2(vh/3m2) (3.22) 

X(3+16r jA-48( 5 ? - ^ ) 2 A 2 ) 

+(3C(tj)3C(r,)-a(rj)<}(v)) 

X(l+S(V+rj)/s-4S(.V-vy/s2)} , 

bc(s) = 2Z *(S(fl)8(i»)/(16»»J)*5)Pi, 

buc (s) = 2Z(.<3(vMv)/(l6m>)2s)P2, 

bM
M(s) = Z { - <80j)/8m V ) ( SF(u) - 23C(r,)+0 (n) 

+%{ri)r,/3m?)Q*- 2{q{f,)${ri)/(.\6m2)2s)Pi) , 

»o(*)=Z:-(S(fl)8(i»)/32« J*0Gt, 

where Pi is a member of the class of polynomial (2.20). 

Pi=s(s2-10(v+fj)s+32(v
2+v2) 

-(m/3)r,rj-32(V+rj)(.V-fj)2/s). 
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In order to obtain the decomposition of the Eqs. 
(3.17) into parts which are zero at s=0 (as we did in 
Sec. 2) it was necessary to approximate (4M2—s) l /2 by 
4m, an approximation which is extremely good in the 
region where the dominate contributions to the integrals 
arises. Hence we have taken: 

m r00 r00 

L = drj ^ 6 > [ ^ 1 / 2 - V / 2 - ^ 1 / 2 ] . (3.21a) 
2sl/2)ct> J a> 

In addition to the above rather trivial approximation, 
we have retained only the leading terms in expressions 
(3.22). [See Appendix B following Eq. (B7) for a detailed 
discussion of this point J This means essentially that we 
have neglected terms which are small when s is small 
and the d-N invariants are large, and large only when 
s is large and the d-N invariants are small. 

We wish to call the readers attention to the term 
DQM(S), which has no counterpart in the Jankus po
tential theory. One might argue that DQM(0) = 0 because 
the quadrupole moment should depend only on the 
nucleon charge, and not its magnetic moment. Such a 
condition would be easy to impose by subtracting 
DQM(S) once at the origin. We have decided not to 
impose this condition here, and as it turns out it makes 
little difference since its effect is less than 1% anyway. 

Now let us compare Eqs. (3.22) with our potential 
theory Eqs. (2.23). If we make the identifications 

s = —q2 (a) 

s' = x (b) 
(3 23) 

m^$(v) = f(v) (c) V ' ; 

l(2my*/3m*Mv) = g(v) (d) 

we note that the expressions are strikingly similar.10 In 
fact the only terms not identical to their nonrelativistic 
counterparts are RM, RQ, and DQ

M for which there are 
no corresponding nonrelativistic terms and bMM which 
is slightly more complicated than its potential theory 
counterpart. I t is tempting to regard these extra terms 
as relativistic corrections, and the significance of this 
statement will be examined shortly. Of course, this close 
correspondence which is effected through Eq. (3.23) is 
not entirely an accident; we chose the particular in
variants SF and 9 to make this as true as possible (see 
Appendix B). Nevertheless, it is significant that the 
three diagrams of Fig. 2 have a structure so similar to 
the Jankus potential theory. 

At this point two questions beg for an answer. The 
first can be stated as follows: Are the deuteron wave 
functions defined uniquely by the relativistic theory? 
To be more specific: If one calculates Dc and DMC 

relativistically using Eq. (3.22) and then chooses / a n d g 
(S- and D-state wave functions) to give the same answer, 

10 Note that this identification differs from Ref. 1 by a factor 
of mll% due to the presence of spin. 

will the choice (3.23) be the only one possible?11 The 
second question, closely related, is: Are the two theories 
really inconsistent? Is it true that we cannot find some 
/ and g such that all of the nonrelativistic form factors 
agree with the relativistic ones ? The answer to both of 
these questions is yes. 

The proof of the uniqueness of the wave functions in 
the precise sense mentioned above has been relegated 
to Appendix C, and we will say no more about it here. 

Once the uniqueness of the wave functions has been 
established, the answer to the second question follows 
trivially. Since (3.23) is the only identification which 
will make Dc and DMC identical in the two theories, the 
rest of the nonrelativistic expressions can be calculated 
unambiguously using these / and g, and one observes 
that for example unless the term RM is zero, the expres
sions for DMM cannot agree. Hence, no matter how we 
chose / and g, we cannot in general produce a Jankus 
theory with the same predictions as (3.22) and the 
theories are fundamentally inconsistent (although the 
differences are very small at low momentum transfer). 
Among other things, this earns us the privilege of re
garding terms like RM as relativistic corrections, since 
these terms indicate the extent to which the two theories 
are incompatible. 

Let us remind the reader that we have not yet said 
anything about the relationship of (3.22) to the pre
dictions of an arbitrary potential theory. Our discussion 
has been limited only to the Jankus theory, defined by 
the choice of current density (2.5). In Sec. 5 we shall 
make some remarks about the more general problem. 

Equations (3.23c) and (3.23d) for rj = a2 [see Eq. 
(3.25) to follow] also follow from a comparison of the 
d-N vertex (3.4) with the Fourier transform of the 
deuteron wave function.4,7 However, for values of u off 
the mass shell (rj^a2) it is impossible to make such a 
comparison, for in this case all four of the invariants in 
(3.4) contribute and one does not know how to reduce 
these approximately to the two S- and D-state invariants 
which one has in the wave function. For this reason it 
has often been customary to neglect the H and / in
variants in such discussions. Only by using (3.4) in a 
full calculation of the form factors, and then comparing 
the results with potential theory can one see how the 
four d-N invariants simulate the role of the S- and 
.D-state wave functions. In particular, one observes that 
the 3C invariant is very important in the 5-state wave 
function, and as we shall see in the next section it would 
have been disastrous to neglect it. 

Let us return now to the discussion of the relativistic 
wave functions. From Eqs. (3.23), (2.9), and (2.14) 

11 There is an ambiguity of sign which is always present and 
would make the answer to this question trivially false. It is to 
be understood in subsequent discussion that we mean uniqueness 
up to a sign. 
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we have: 

u(r) = Ns\ e~ar+2 / dr)$(r))e-»1/2r 

w(r) = ND e-<"-(l+—+ ) 

r ŝo?) ,, / 
2 dr, e - ' "MH— 
J m <*29o ^ v 

(3.24) 

+2 
rjr ;)}• 

where 

NB=( — ) 3=0= ( — ) [Fo S o ) , 
W / \ 8 x / \ 3w2 / 

( — ^ — ) • 

\ ^o- (a 2 /3w 2 )Qo/ 

V2 e g0 

(3.25) 

3 m 3o 3m\Fo— (a2/3w2)Qi 

Introducing the deuteron effective range, p(— e, — e)=pM 

and the asymptotic .D/5 ratio; po, we have: 

/ 16jra \ l u / pD\ 
3ro=( ) ; F 0 = 3 : o ( l + — J! 

\m(l-Pra)J \ V2/ 

go 3PD»Y 
(3.26) 

F 0 Vie Vl+pz 

Equations quite similar to these have been given be
fore,7,12 although our results differ very slightly from 
these. Since there is some slight ambiguity in the choice 
of g (see discussion in Appendix B), this is not surprising. 

In what follows, we will regard g0 and F0 as undeter
mined parameters and hence shall determine pr and px>. 
In practice we have quite a fair knowledge of pr and p& 
however, and hence the closeness of our results for these 
parameters offers another check on the over-all validity 
of the theory. As a standard of comparison we use the 
results of Hamada, Johnston (HJ)13 and Glendenning, 
Kramer (GK)14 which quote values of pn and pr given 
in Table I. Also included in this table are F0

2 and y 
calculated from these values. 

TABLE I. Values of the deuteron effective range p(— e, ~e)=pr 

and the asymptotic D-to-S ratio PD, and two quantities which 
depend on them, .Fo2 and y [defined in Eq. (3.26)], obtained 
from Ref. 13 (HJ), Ref. 14 (GK), and this paper. 

Ft Pr(F) PD 

HJ 
GK 
This paper 

4.31 
4.31 
3.81 

22.9 
22.9 
24.5 

1.77 
1.76 
1.43 

0.02656 
0.02654 
0.028 

12 R. Blankenbecler, M. L. Goldberger, and F. R. Halpern, 
Nucl. Phys. 12, 629 (1959). 

13 T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962). 
14 Potential No. 8 of Ref. 6. 

Now let us examine the structure of Eqs. (3.22) in a 
little more detail. One observes that in order to satisfy 
unsubtracted dispersion relations, it is necessary and 
sufficient that the following conditions hold (for arbi
trarily large N): 

/ $(v)dV, / W(v)dV, 
J a2 J a} 

J,' 
I. 

#(r])dr)<constN1/2, 

N2 const 

S(v)dv<——. 

(3.27a) 

(3.27b) 

These conditions are the relativistic counterpart of 
the A conditions introduced in Sec. 2. The second equa
tion (3.27b) means that the new invariant Qf = Gf—^Ff 

+ [(u-ni2)/6<m2JiH'+I0 [recall Eqs. (3.19)] must 
satisfy an unsubtracted dispersion relation. In partic
ular it is necessary that 

1 rlm$ {uf)du' 
S o = - • . (3.28) 

u —W 

Because of this condition it will be possible (and in fact 
necessary) to calculate the ratio y introduced in (3.26). 
Hence we will be ultimately left with only one free 
parameter, F0. This is discussed in considerable detail 
in the next section. 

The conditions (3.27) and, in particular, (3.28) are 
crucial. I t is just these conditions which make unsub
tracted dispersion relations possible, and hence a funda
mental determination of the deuteron parameters. Had 
we looked at the relativistic theory only, it would be 
natural to raise the following question: How do we know 
that such conditions are reasonable, and furthermore, 
how can we possibly expect an approximate calculation 
to satisfy the very stringent condition (3.28)? 

Our fears can be considerably mitigated however by 
examining the results of Sec. 2, where we observed pre
cisely the same "difficulty" with potential theory. Here 
we observed that the counterpart of (3.28) was just the 
requirement that the Z)-state wave function be normal-
izable, and its necessity arose because of our choice of 
the form (2.9b) instead of (2.9c) to describe the J9-state 
wave function. The potential theory also suggests that 
this condition is one that must be imposed on any 
approximate calculation; that if it is not satisfied 
naturally we must arrange for it to be true, or else our 
theory cannot possibly give a satisfactory description 
of the D state. This is precisely the point of view we shall 
adopt in the next section; it is what will give us a deter
mination of y within the theory. I t appears that this 
procedure provides a sound answer to the objections 
raised by Nuttall.16 

16 J. Nuttall, Nuovo Cimento 29. 841 (1963). 
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At this point it is also clear that in order to discuss 
the D-state wave function in an approximate manner, it 
is essential to treat at least the three diagrams shown 
in Fig. 2. This is because these three correspond to 
taking the simplest contribution to the dispersion inte
gral in (3.28) (the one-pion-exchange approximation), 
and hence should be treated as a set. Any smaller set 
would consist of simply the basic triangle diagram, 
Fig. 2(a), and for this diagram it is impossible to satisfy 
(3.28) unless we take 9o=0 (i.e., neglect the D state). 
Of course, we could neglect the polynomial s dependence 
associated with the 9 terms, as has been done by Jones,16 

but this does not lead to any readily identifiable D-state 
wave function. For some remarks about other diagrams 
which could be considered, see I. 

In the calculation to follow we shall actually impose 
more than the minimum requirements (3.27). We shall 
require in addition to (3.28) 

ffo = -
1 r00 Im&(u')du' 

00 lm3Q,f(u')du' r rimW(u')du' 
I I m g V ) ^ ' = J ; (3.29) 

•f 
Im$f(u')duf 

- = 0 . 
u — m£ 

These requirements amount to a generalization of the 
nonrelativistic B conditions, and are sufficient to 
guarantee that the relativistic S- and D-wave functions 
of Eq. (3.24) will approach zero at the origin. They can 
be regarded as generalized sum rules, and we shall 
henceforth refer to them as such. 

There is an important reason for requiring the sum-
rule conditions (3.29). As we mentioned earlier, Eqs. 
(3.22) actually contain only the leading terms, and the 
more exact expressions for the form factors contain in 
addition many terms involving higher powers of s, rj, 
or rj. The sum rules (3.29) are sufficient to guarantee 
that retention of the next two higher powers of s, rj, or fj 
would also lead to unsubtracted dispersion relations, and 
hence guarantee that neglect of these terms does not seri
ously alter our results. This reason alone is sufficient to 
introduce these sum rules, and the fact that they corre
spond nonrelativistically to the wave functions ap
proaching zero at the origin merely provides an inter
pretation of the conditions. 

In fact, one can generalize the above to the following 
result. If one retains polynomials in s, i?, and rj to order 
L, then the following conditions must be satisfied for 
each invariant: 

/ . 

N2 const 
$(y)vndy< 

j\T(£-£-2n) 
(3.30) 

16 H. F. Jones, Nuovo Cimento 26, 790 (1962). 

Note that these conditions are equivalent nonrelativisti
cally to requiring that the first few even derivatives of 
the wave functions be zero at the orgin [cf. Eq. (2.18)]. 
This is a curious fact, for if these were sufficient to 
imply that all of the first few derivatives of the wave 
function were zero at the origin, we would have a rela
tivistic explanation for the so-called repulsive core. 
This is not the case, however, and thus the repulsive 
core appears to be of some other origin. 

We now turn our attention to a calculation of the 
deuteron-nucleon vertex. 

4. THE DEUTERON-NUCLEON VERTEX 

We have seen in detail how the deuteron-nucleon 
(d-N) vertex plays the role of the wave function in the 
preceding section. In this section we shall calculate the 
four invariants of this vertex function in the one-pion-
exchange (OPE) approximation. This will correspond to 
evaluating the form factor from the three diagrams 
shown in Fig. 2, as discussed in some detail in I. Recall 
that in order to include more diagrams of the type shown 
in Fig. 6 in I, it is only necessary to include the additional 
processes in a calculation of the d-N vertex and sub
stitute the results into Eq. (3.22). Hence the results of 
Sec. 3 are actually valid for an infinite subclass of dia
grams which pertain to the deuteron form factor. 

Before we plunge into the details of a calculation of 
the d-N vertex, let us now discuss in some detail the 
approximations we shall make in this calculation and 
our general philosophy guiding it. 

To begin with, we shall only calculate the imaginary 
part of the d-N invariants in the anomalous region of 
the OPE approximation. Outside of this region [in the 
normal region u> (m+ju)2] we shall estimate the imagi
nary parts with the aid of the B conditions discussed in 
Sec. 3. Our basic philosophy is that the really important 
contributions come from the anomalous region; beyond 
this the precise structure is not very important and can, 
and probably should, be estimated. 

There are a number of arguments to justify this point 
of view. To begin with, experience with the scalar case 
in I suggests that the imaginary parts of the d-N in
variants in the normal region are indeed small (see 
Fig. 10 in I) , and hence a rough estimate can be expected 
to introduce only a small error. Furthermore, we have 
some idea how it behaves in this region, and hence we 
expect to do a credible job in estimating it. Secondly, the 
arguments in Sec. 3 suggest that the B conditions would 
arise naturally in an exact calculation and hence ought 
to be imposed on the invariants derived from an approxi
mate calculation. The imposition of the B conditions is a 
way of estimating the effect of the higher mass states 
(u large), and hence the use of the B conditions to deter
mine the d-N invariants in the normal region may even 
be more reliable than a straightforward calculation, 
which would, after all, be based only on the OPE ap
proximation, when in the region of u> (ra+ju)2 it is well 
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known that many other diagrams begin to contribute. 
The results of our calculation indicate to what extent 

this is true. We believe that detailed knowledge of 
the d-N invariants in the anomalous region alone is all 
that seems to be necessary for a 10% theory, and that 
this together with a rough estimate of these invariants 
in the normal region is sufficient to give a 5% theory. 
Nevertheless, it would be most interesting to calculate 
the absorptive parts of the d-N invariants in the 
normal region, and see how they compare with the 
estimates we will present later on in this section. 

Let us turn now to the details of the calculation. 
We will calculate the d-N vertex in the same manner 

as sketched for spinless particles in I. As a generalization 
of Eq. (3.15) in I we immediately obtain (see Fig. 3 
for key to momenta): 

ImTa(u,pN)e 

1 1 r2 

r/227r./o 
dip 

S{l(M+m)2-uJu-(M--m)2']}1 

X E (75gT(i) • £(^ > M M (H+w) 
i 

XlF,r+{G,/mm-ny] 

xe[n 5 ?( i ) - / i ( f )^( i ) ( !+ w ) ] r }, (4.1) 

where we have introduced the pion-nucleon coupling as 

(4pwy*(p | M n) = u{p)gy*u(n)T* • H(p)Mn), (4.2) 

where T is the isospin of the pion and jj,(p) and ix{n) the 
isospins of the nucleons. Throughout this paper we have 
assumed the pion-nucleon coupling constant is given by 

g 2 /47T=14. (4.3) 

The isotopic spin sums can be readily performed. We 
sum over the isospins of the exchanged pion, and 
average over the isospins of the emitted nucleons: 

S = L* T(f) • fi(pW(n)T*(i) • M(tf)«7*(0 

= ZKn)Mp)'KN)Ml) 
= | trace E* {crV*}, 

Hence 
S = ~ 3 (4.4) 

and we obtain after some rearrangement of terms 

ImTa(u,pN) 

3g2 1 ^ I dip 

S{l(M+m)2-u]lu-(M-m)2']}1/2 2TT . 

X{(n-tn)tFoy«-(Go/fnM-n)aJl+tn)}. (4.5) 

In Appendix D we present the integral identities which 
are needed to obtain the absorptive parts of the d-N 

FIG. 3. The deuteron-
nucleon vertex in the one-
pion-exchange approxima
tion. 

vertex invariants. The results are finally 

ImF'=RF0[_fi2- (u- m2)b~ 2MV], 

ImG'=R{F*2m*{d-e) 

+Golfx2+(a-b)ix2-(u-m2)(b+e)2}, 

ImHf=R{-FQm2(a-b)-Gofi2c}, 

Imr=R{-F02m2(b+e)+G0m
2(a+b+d+e)} , 

R^Zg2/%{l(M+m)2-uJiu-{M-m)2']}112, 

where a, b, c, d, e are functions of u defined in 
Appendix D.17 

Note that the invariants above depend on the two 
parameters F0 and G0, which we will regard as undeter
mined following the discussion in Sec. 3. Hence, letting 
the symbol A represent any of the invariants (4.6), we 
introduce the functions A^0 and AG° according to 

(4.6) 

ImA=JFoA/+G0AG°, (4.7) 

where FG°=0. These seven functions are plotted in the 
anomalous region in Fig. 4 as a function of rj where 
u=m2+2(rj—a2). 

Now, as outlined above, we assume the results are 
dominated by the anomalous contributions of the d-N 
invariants, and that the contribution of these invariants 
in the normal regions (which we shall hereafter refer to 
as the "tails" of the invariants) give only a slight modifi
cation of the basic results. But this cannot be true unless 
the integrals from the anomalous region alone are finite. 
In other words, we will impose the A conditions on the 
functions in (4.6) and then choose their tails so that the 
B conditions are also satisfied. The main advantage of 
this procedure is that it seems to emphasize the impor
tance of the anomalous region, which clearly dominates 
the problem, and will enable us to determine the tails 
in an unambiguous fashion. 

The imposition of the A conditions on (4.6) leads to 
the following requirement: 

S o = - [ 
TT J v. 

1 r^&lm&iu'W 

uf—m2 
(4.8) 

which in turn will enable us to specify the ratio y and 
hence the asymptotic D/S ratio of the deuteron. This 
determination is essentially identical to that of Blanken-
becler and Cook, and the success of our point of view 

17 The terms in Eq. (4.6) involving a factor of u—m2 were 
omitted from Ref. 7. 
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is in part judged by the reasonableness of the PD 
parameter thus determined. 

It is found that the functions QF° and Q0° are well 
approximated by 

2QF°= [70.2/V--3.36A+0.71] 

X6(v-1.77)6(7.33-1,), (4.9) 

2go°«-0.03^-2.33X7.33-1;] . 

Hence, (4.8) becomes 

r7-33 /70.2 3.36 \ 
Qo=Go-iF0= / dvFo[ +0.71) 

J 1.77 \ V2 V ' 

J 2. 
drjG0(0.33), (4.10) 

' 2 . 3 3 

7 = So/^o=24.5, 

PD = 0.028. 

This value of PD is in fairly satisfactory agreement with 
the results quoted in Sec. 3. 

IOh 

A° 

Oh 

V T ? 
4 2 6 

17 ( in units of/«tc) 

FIG. 4. A graph of the seven functions AF° and AQ° in the one-pion-
exchange anomalous region of the d-N vertex. 

77 (in units of pr) 

FIG. 5. A graph of the invariant $ with 7 determined^ by Eq. 
(4.10), and the tail chosen to satisfy the B conditions as discussed 
in the text. In the anomalous region the approximate form (4.11) 
agrees so well with the exact results obtained from (4.6) that no 
attempt has been made to draw them as separate curves. The 
short line to the lower right of the figure is the value of BS) giving 
the asymptote of the curve as y\ —>??* = 46.3/A The two dashed 
lines show the positions of the anomalous and normal thresholds. 

was introduced as a separate invariant to facilitate 
calculation of PD. TO insure maximum consistency, A\ 
and As of g were therefore chosen to give the same 
zeroth and first moment of g as that obtained from 
2r)Q directly. 

TABLE II. Values of the -4's and B's found to give a good fit 
to the d-N invariants (3.20) using the approximate forms (4.11) 
and (4.12). 

ff 
9 
277g 
5C 
# 

Ax 

0.187 
84.5 

189.5 
0.792 

-0.143 

A2 

0.0178 

-3 .54 
-0.0036 

0.030 

A, 

0.0320 
0.612 

36.6 
0.298 

-0.094 

Bx 

25.7 
196.6 

2623.0 
53.3 
21.5 

Bz 

-0.0125 
-0.156J 
-6 .10 
-0.089 
-0.023 

The remaining job is to determine the tails of these 
d-N invariants. This was done by requiring, somewhat 

Now that the ratio 7 is known, the invariants (3.20) 
are completely determined up to a constant F0. These 
are shown in Figs. 5-9. In the same figures we have also 
included the tails, which were determined as discussed 
below. 

Now, for the purposes of calculating the triple 
integrals we approximate the d-N invariants (3.20) in 
the anomalous region [i.e., u0<u<(m+p)2'2 by func
tions of the following form: 

-xW^Ai/yM+Aw+As, (4.11) 

where we have introduced x(v) as a generic name for the 
functions denned in (3.20), These approximate forms 
do an extremely good job fitting the exact functions. 
The parameters A i for the different invariants are given 
in Table II. For mathematical simplicity the coefficient 
A 2 in g was taken to be zero, and the combination 2rjQ 

FIG. 6. A graph of the invariant 9- See caption 
to Fig. 5 for explanatory remarks. 



D E U T E R O N E L E C T R O M A G N E T I C F O R M F A C T O R . I I B153 

80 

60 

40 

£"20 

0 

-

-

1 

\ 1 
\ 1 
\ 1 
\ 1 

^ ^ i 

i • 
i 
i 

i i i t i i i ... J J 

6 8 10 12 
r) (in units of JX*- ) 

FIG. 7. A graph of the invariant 2^8 showing the tails as 
determined directly from the B conditions compared with that 
obtained from the tail of 9 (Fig. 6) multiplied by 2rj (dashed 
line). See caption to Fig. 5 for additional explanatory remarks. 

arbitrarily, that the tails have the functional form 

(B1/^
2+Bz)0(v~ 7.33)0(^-7,). (4.12) 

The two parameters B\ and Bs were then chosen so that 
the functions would be continuous at the normal thresh
old, and so that the B conditions be satisfied. For the 
G invariant, we wished to retain Eq. (4.10) as sketched 
above, in addition to imposing the B conditions. This 
was possible only for a definite (unique) value of rjf, 
the parameter which determines the extent of the tails. 
In the case described above rjt=4:6.3 n2. The same value 
of rjt was required to hold for all of the tails. 

Whatever the objection to the above procedures, they 
at least completely and uniquely determine the d-N 
invariants. The choice of the functional form (4.12) was 
motivated by the fact that they give shapes for the tails 
expected from experience with scalar theory. In addi
tion, both (4.11) and (4.12) are easy to integrate. It 
should be emphasized that no effort has been made to 
adjust the shapes of the tails to improve the results; the 
above outlined procedure was decided on before the 
results were known. 

Before we close this section it is amusing to calculate 
the deuteron wave functions implied by these invariants 
using Eq. (3.24). This can be easily done numerically, 
and the results are given in Fig. 10. Note that our wave 
functions show no repulsive core behavior. 

5. NUMERICAL RESULTS AND CONCLUSIONS 

Using the approximate functions defined in the pre
ceding section, the integrals over rj and rj were done 
analytically and the absorptive parts of the form factors 
determined. It was also possible then to calculate the 
form factors themselves analytically, although this in
volves several hundred integrals. As a result, the final 
integration over s was done numerically. 

The numerical results, obtained on the Cornell 1604 
computer, are presented in Tables III and IV and 
Figs. 11-16. As an introduction to a review of the results, 
we mention two of the uncertainties in the present 
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FIG. 8. A graph of the invariant 5C. See caption 
to Fig. 5 for explanatory remarks. 

rj (in units of /i2) 

FIG. 9. A graph of the invariant 4. See caption 
to Fig. 5 for explanatory remarks. 

calculation. Although there is little doubt that the tails 
of the d-N vertex invariants should be included in a 
careful calculation, and that the sum rules for the d-N 
invariants [Eqs. (3.28) and (3.29)] discussed in Sees. 3 
and 4 should be retained, there is still some uncertainty 
associated with these tails for the obvious reason that 
we do not know their precise shape. This is probably 
most noticeable in our procedure for determining the 
ratio 7. Secondly, as the calculation stands, the sum 
rules guarantee that the form factors will be well de
fined if their absorptive parts are integrated to infinity, 
and that the contributions to the dispersion integrals for 
large s are small. However, for s> 181 /x2, the first normal 
threshold, the discontinuities of the form factor calcu
lated from the diagrams of Fig. 2 begin to deviate from 
those assumed in (3.22). This effect is undoubtedly 
small, but it is aggravated by the fact that at these 
large values of s many other diagrams (some of them 
discussed in I) will begin to contribute. In other words, 
our calculation of the absorptive part above 181 p2 (say) 
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TABLE III . Values of the static (i.e., for s=0) integrals defined in Eq. (3.17) for the 4 cases discussed in the text. The case shown 
in italics is to be theoretically preferred, as discussed in the text. The definition of the magnetic moment n and quadrupole moment Q 
of the deuteron is given in Eq. (1.8b). 

PD RM RQC RQM Q 

With d-N tails 
Integration/181 M2 

limit \736 fx2 

Without d-N tails 
Integration/181 ju2 

limit \736 fi? 

7.3% 
5.6% 

6.3% 
10.3% 

0.066 
0.060 

0.042 
-0.092 

24.15 
24.79 

23.03 
21.82 

-0.45 
-0.39 

-0 .44 
-0 .46 

0.50 
0.64 

0.49 
0.77 

1.735 
1.75 

1.73 
1.56 

24.4 
25.0 

23.2 
22.0 

3.79 
3.81 

3.44 
3.27 

Experimental (6.5±1)% 1.715 25.5 

is clearly not any longer very meaningful, and it is 
perhaps unclear how far out we should integrate (3.22) 
in order to allow best for these unknown additional 
contributions. 

Neither of these uncertainties is very serious. They 
both could be essentially eliminated by doing more 
work! However, here we will be content with presenting 
four different calculations to give an idea of the effect 
of these considerations. 

To understand the importance of the d-N vertex 
tails we present calculations with (1) the tails as deter
mined in Sec. 4, and (2) the tails arbitrarily set equal to 
zero, so that conditions B are no longer satisfied. In 
both cases conditions A are satisfied however. 

To give a crude idea of the effect of the normal 
thresholds we present calculations in which (1) the 
imaginary parts have been integrated to infinity (infinity 
is actually 736/x2 because with our choice of tails the 
B conditions guarantee the imaginary parts are zero 
above this18), and (2) the imaginary parts have been 
integrated to 181 /x2. The first case assumes that (3.22) 

3 4 5 
r (in units of f f ' ) 

FIG. 10. The deuteron wave functions, normalized so that 
Jl^ttP+w^dr — C. The solid line is this calculation with C—1. 
The dashed-dotted line is the Hamada-Johnson function (Ref. 13) 
with C=0.9. The dashed lines are the asymptotic forms [form 
(2.9b) is taken for w~\. 

18 Actually for a few of the small terms in Eq. (3.22) this is 
not true. 

gives a good estimate of the imaginary parts above 
181 jit2; the second assumes that the unknown contribu
tions somehow conspire to make the imaginary part 
zero above 181 M2. 

It is our feeling that the d-N vertex tails definitely 
should be included, and that the imaginary parts should 
be integrated to infinity. Unless specifically stated 
otherwise, all results refer to this case. The other cases 
are presented only to get an idea of how sensitive the 
calculation is to the uncertainties mentioned above, and 
are believed to represent extreme estimates on the over
all uncertainties. Results for these four cases are shown 
in Table III for the static integrals, the magnetic and 
quadrupole moments, and the normalization constant 
F<? related to the p's by Eq. (3.26). In all cases F0

2 

was chosen to give the correct charge, and PD was given 
by Eq. (4.10). 

Note that the effect of changing the upper limit is 
only a few percent when we include the tails in the d-N 
vertex functions, but may be fairly sensitive with the 
truncated functions. No matter what assumptions are 
made about the tails one seems guaranteed of at least a 
10% theory; a reasonably careful inclusion of these tails 
seems to yield at least a 5% theory. Note how sensitive 
the relativistic correction to the magnetic moment, RM, 
is to the upper limit with the use of truncated d-N 
vertex functions. 

Table III points out clearly what the limitations of 
the present calculation are. Two of the most interesting 
terms, the D-state probability and the relativistic cor
rection to the magnetic moment RM are sensitive to the 
way in which they are calculated, and hence we must 
regard them as not very well determined. This is a 
disappointment, but is confirmed by all other attempts 
to determine these quantities! The reason for this un
certainty is shown in Figs. 11 and 12. Both of these 
functions depend strongly on the imaginary parts for 
large s, and hence are sensitive to our lack of informa
tion. At the same time, we feel the reasonable values 
obtained for these terms should be regarded as a success 
of this calculation. 

It is unclear why the values for F0
2 disagree with HJ 

and GK and with each other as much as they do. This 
is probably an indication of the fact that our ratio y and 
our choice of d-N vertex tails is not what it should be. 
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S ( in units of / i 2 ) 
400 

FIG. 11. A graph of the imaginary part a,RM. See caption 
to Fig. 13 for explanatory remarks. 

However, Fig. 13 would tend to suggest that F0
2 should 

be relatively insensitive to this variation. 
Finally, in Figs. 14-16 and Table IV we present 

results for the energy dependence of the form factors. 
For these results we have defined 

F M = ( V 6 A T 2 ) 1 / 2 ( ^ C + 0 . 8 8 0 G M M ) , 

YQ= (s*/18M*)1/2(GQ
c+0.S80GQ

M). 
(5.1) 

These Y would be the functions (except for a factor of 
Fc) which occur squared along with Dc in the cross 
section (1.2) ifFc=FM. Note that the results differ from 
those obtained by GK. 

It is natural at this point to make a few remarks about 
the possible significance of the explicit 3 pion contribu
tion. The GK results (potential 8) are significantly lower 
than our results (Fig. 14). This can be understood from 
the fact that our wave functions have no hard-core 
behavior (Fig. 10). Now, since the neutron-charge form 
factor determined from the GK results has a distinct 
tendency to be negative, the results presented here 

0.1 

c2f)Q 

-0.1 
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/ n 
/ \ \ I \ \ 

\\ 

i i 
) 100 200 

i i 
300 40C 

S (in units of /x2^ 

FIG. 12. A graph of the imaginary part ai>. See caption 
to Fig. 13 for explanatory remarks. 

TABLE IV. Values of the deuteron form factors for a few 
representative values of momentum transfer squared. The F's 
are defined in Eq. (5.1). In all of these the d-N vertex tails were 
included and the dispersion integrals were integrated to 736 n2 

(infinity). 

-s(S) 
0.0 
0.4 
0.8 
1.2 
3.0 
6.0 
9.0 

12.0 

Dc 

1.000 
0.899 
0.820 
0.754 
0.391 
0.391 
0.296 
0.235 

DMC 

0.084 
0.081 
0.079 
0.073 
0.067 
0.055 
0.047 
0.040 

DM
M 

1.892 
1.709 
1.566 
1.450 
1.106 
0.813 
0.651 
0.545 

YM 

0.0000 
0.0304 
0.0396 
0.0450 
0.0547 
0.0573 
0.0565 

-0.0547 

DQ° 

24.41 
21.70 
19.56 
17.83 
12.73 
8.50 
6.24 
4.85 

DQ
M 

0.64 
0.63 
0.62 
0.61 
0.57 
0.52 
0.48 
0.44 

YQ 

0.0000 
0.0116 
0.0210 
0.0288 
0.0518 
0.0702 
0.0782 
0.0821 

would make it even more negative. However, one has a 
feeling that the form factor should be positive, to agree 
with the thermal neutron-scattering experiments and 
the inelastic electron-deuteron scattering experiments. 
The answer could lie in either of two directions. 

300 

S (in units of / i 2 ) 

FIG. 13. A graph of the imaginary part as. The solid line in
cludes d-N vertex tails as estimated by Eq. (4.12); the dashed 
line is the case when these tails have been set equal to zero. 

The approximations and uncertainties in this calcula
tion could produce this effect. If we were to impose 
additional sum rules of the type shown in Eq. (3.30), 
we would more nearly reproduce a hard-core wave func
tion, which would cause the form factors to fall off more 
rapidly with energy. However, it is our feeling that a 
more probable explanation lies in the 3-pion contribution. 

The explicit 3-pion contribution is yet to be calcu
lated. To assume that this is negligible is almost cer
tainly wrong, but it is reasonable to assume that it is 
small. If it were negative, it could easily reduce the form 
factor a significant amount, and hence account for the 
expected positive character of the neutron charge form 
factor. It is our guess that the 3-pion contribution will 
ultimately have this effect. 

We summarize our principal conclusions. To begin 
with, one has some reason for optimism, but there are 
still many very important things left to do. Besides a 
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- S ( i n units of F"2) 
2 3 4 5 

S (in units of pr ) 

FIG. 14. A graph of Dc, solid line, compared with the equivalent 
quantity calculated by GK (Ref. 14), dashed line. 

calculation of the 3-pion contribution and some of the 
extra diagrams sketched in I, it would be worthwhile to 
undertake a far more careful calculation of the d-N 
vertex functions, and at the same time retain all of the 
terms neglected in our formula in Sec. 3 (see Appendix 
B). With a better knowledge of the d-N vertex tails, 
which could be obtained in a relatively straightforward 
manner, one might hope to considerably reduce the un
certainties. Among other things, this could be expected 
to pin down the Z>-state probability, asymptotic D/S 
ratio, and the very interesting relativistic term RM. 

An amusing lesson learned from this work is that it 
would be unwise to neglect the d-N invariants H and / 
in any calculation in which one is attempting to treat 
the deuteron wave function relativistically. The H 
invariant turns out to give the principal contribution to 
the weight function of the 5-state wave function; with
out it the radial wave function u(r) shows no tendency 
to decrease as r —» 0 (in fact it increases faster than the 
asymptotic form e~ar). With the contribution from H, 
however, the radial wave function has a natural tendency 
to decrease toward zero at the origin. 

6 8 10 
S (in units of /x2) 

FIG. 15. A graph of YQ, solid line, compared with the equivalent 
quantity calculated by GK (Ref. 14), dashed line 

We close this paper with some speculations about the 
relationship between a potential theory and a relativistic 
theory. To begin with, it is clear that this calculation 
differs in significant ways from the Jankus theory. As we 
showed in Sec. 3, no wave functions can be found which 
will make the two theories agree. This is due principally 
to the existence of the term RM, and others like it. We 
also showed in Sec. 3 that this relativistic approach does 
provide an unambiguous way to determine relativistic 
wave functions for the deuteron. All of these results 
are interesting, but perhaps not very significant, and it 
is this we wish to discuss now. 

It is well known that the introduction of L«S or 
(L«S)2 terms into the potential will modify the effective 
magnetic moment operator.19 In fact, any energy-
dependent potential will have this effect, and it is not so 
surprising to speculate that for any relativistic calcula
tion of the deuteron form factor, a sufficiently compli
cated energy-dependent potential could be found to 
simulate the relativistic results in a nonrelativistic 
manner. If this were true, then it is clear that a potential-
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FIG. 16. A graph of YM, solid line, compared with the equivalent 
quantity calculated by GK (Ref. 14), dashed line. 

theory approach could be just as correct or as fruitful 
as a relativistic one. Several cautioning remarks can 
be made, however. 

The first is that it is pointless to talk about "rela
tivistic corrections" without referring to some definite 
potential theory. Once we have committed ourselves to 
a definite potential theory [i.e., a choice of Hamiltonian 
or current density like Eq. (2.5) but not necessarily a 
definite choice of radial potential] then we can compare 
relativistic results with this theory, and introduce rela
tivistic corrections. Even then, the only way to discuss 
these corrections is to isolate the diagrams which gener
ate them, and since it would appear that we have no 
way of telling beforehand how to do this, the only way 
to discuss relativistic corrections is to do the entire 

19 See, for example, Blin-Stoyle, Theories of Nuclear Moments 
(Oxford^University Press, New York, 1957). 
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problem relativistically and make a detailed comparison. 
The second remark is that the failure of a potential 

theory to agree with a relativistic theory may not 
necessarily mean that the potential theory is incorrect. 
It could mean that certain terms have been left out of 
the relativistic calculation. The converse, of course, is 
also true. For example, the hard core usually introduced 
into phenomenological potentials could be the non-
relativistic way of allowing for the 3-pion contribution, 
and the failure of our wave functions to exhibit this 
behavior may be expected. 

The final remark is that potential theories as viewed 
in this light are phenomenological. Since one chooses 
the potential to fit a wide variety of experimental data, 
it may be a fairly reliable tool for predicting the results 
of a new experiment. If one wants the feeling of explain
ing the experiments, however, a relativistic theory is 
necessary since adequate potentials are probably too 
complicated to appear very fundamental, and further
more, must be constantly revised as more information 
accumulates (because they are nonrelativistic). In addi
tion, there is no guarantee that a single potential (no 
matter how complicated) could explain a variety of 
experiments as well as a relativistic theory. Note added 
in proof. We thank Professor M. Gourdin for calling 
attention to the fact that J. Tran Thanh Van, using an 
approach similar to ours but treating the d-N invariants 
phenomenologically, has obtained numerical results for 
Dc comparable to ours [see Nuovo Cimento 30, 1100 
(1963)]. 
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APPENDIX A 

In this paper, the following conventions are employed 

m=nucleon mass, 

M=pionmass, 

M=deuteron mass, 

h=c=l, 

m/n—6.72, 

Where € is the deuteron binding energy. The metric 
is taken to be k2= (k0)2—k2. For spin J particles we write 

yflyv+yvyfi=2g^, p=y»pt 

and the Dirac equation is 

(p-m)u(p) = 0 u=u*y° 

(p+tn)v(p) = 0 v=v*y° 

uu=2m 

vv= —2m 

u=p-\-m v®v=p—mJ 

where u(p) are the positive energy solutions and v(p) the 
negative energy solutions. Our choice of normalization 
for the spinors has the advantage that the invariant 
matrix elements must contain a factor of (2p0)

1/2 for 
each particle, whether bosons or fermions, instead of the 
usual (2po)1/2 for bosons and (po/m)1/2 for fermions. The 
charge conjugate solutions formed from the v's are 

uc(p) = ev(p), 
uc{p)=-ev{p)1 

where placement of v(p) to the right of C is understood 
to imply vT. The charge conjugation matrix satisfies 

and 

For spin-1 particles of momentum p we introduce the 
polarization vector £ subject to the requirements 

£ 2 = - l Z-p=0. 

The antiparticle states are described by a similar polari
zation vector 77. The positive energy solution corre
sponding to rj is 

APPENDIX B 

In this Appendix we present the angular integrations 
necessary to obtain the results for the deuteron form 
factor quoted in Sec. 3 and the full expression for the 
from factors from which the approximate expressions 
(3.22) were obtained. 

To simplify the computations of the trace W, Eq. 
(3.15), we write it as: 

1 r27r 

W(s,u,u) = — / dip 
2w J 0 

Xtrace] (p—m) -2tnW(u)ri*-K(u)(ri*-p) 

+F(U)Y,*D+ (p-r,*)D / W P») 
m J \ 2m / 

X\2mW(u)Z+K(u)(i:-p)+F(u)DZ 

G(u) 
(P'QD 

m 
, (Bl) 

where 

and 
K(u) = 2G(u)-2F(u)+20(u) 3 
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The spin sums can be performed. The next step is to where 
perform the nontrivial $ integrations. For this purpose E=p-q/s= —%(u—u/s) 
one can prove the following identities: C=P'd/d2=(M+m2-i(u+u))/d2, 

i f 
-if 
2TT JO 

1 r2 

2w Jo 

A = -%(p2+(p-d)2/d2) 
(p'Qd<p= (E-Q&q), = _ ^/2d%(M2-m2)2+m2s+ (M2/s)(u-u)2 

-(u+u)(M2+tn2)+uu~], ( ' 
%'(P'l*)dv=(E+C)tf-q), B=A/d2-A/s-C2+E2, 

^ D=3AC/d2-AC/s+E2C-C*, 
d2=4M2-s. 

(p"n*)(p* £)d<p= (v* * £)A + (rj- q)(%- q)B, The last equation of (B2) includes only those terms 
. which will ultimately contribute to the form factor, 

27r A ^ ' although there are some additional terms antisymmetric 

2ir. 

2TT 

2TT 

__ / (p-g)p>id(p=^A + (£-q)dfX( C2+EC) m u a n d ^ which do not contribute by virtue of the 
IT JO \d2 J symmetrical integration to be ultimately performed 

over u and u. 
-~ ["* (h *W/7 — »*A — ( * \rid-—rz— Fr\ When these identities are employed on the results of 
IT J ^~~^ \d2 / ^ e t r a c e (^1), lengtny expressions emerge. As these 

exact expressions may be of significance in future work 
1 r2T on the deuteron form factor, we present them below. 
~ / (P'£)(P' V^P^d<p They are written in terms of the invariants F(u), G(u), 

0 (t ^V/Mr- l -T^^* a\-^*(t.n\~\4r ^u) a n d ^W d e n n e d i n t n e t e x t- F o r notational sim-
U ?? ;a A t t u KV q) V U & U ^ p l i d t y ^ t h e p r o d u c t j ^ ) ^ ) wiH be written simply as 

+ (^q)(T)*'q)d»D, F2 and F(u)G(u) as FG. Note that FG^GF; the first 

term contains the tZ variable, the second the u variable. If we introduce Wi, W2 and W% defined as 

W=e4,m2{W1(^'^-W2ZHv*'q)~r*(^q)'] -Wz(frq)(ri*-q)/2M*)d*}, (B4) 

we obtain 

W1=F2FML(M2/m2)C+(2A/m2)(l-2C)^-F2F2(l-2C)lM2/2m^ 
-FGFM{^A/m2){\-2C)+FGF2^A/m2){\-2C)l{\-2C)d2 

^G2FM{2Alm2)\\-2C-(M2l2m2)C^-
+ F 3 C F M ( 2 ) - F X F 2 ( l - 2 ^ 
- F ^ ( 2 ^ / w 2 ) ( l - 4 C ) + F < ^ 

+^F2(M/m2)(l-2C)-^2FM(MC/m2)-^F2(2A/m2)(l-2C); (B5) 
W2=F2FML(M2/m2)C+C2d2/m2+MC/m2+E2s/m22-F^^ 

+ F G F M [ ( C - £ ) ( ( M 2 ^ 

+FGF2(SA/m2)l(l-AC)(C-sC/16m2+Es/16m2)+^C2(l-M 
+G27^(4^C/m2)[V8w2+^^ 
- ( l - 8 C ) ( l - M 2 / 4 m 2 ) ] + F X F ^ ^ 
-Grc i^ [ (C+£) (4 - (4MV^^ 
-F^FMl{C~E)^{M2/m2)C~Cs/m2-Es/m2)+8AC/m 
~G^¥2(2AC/m2)l4:-(4:M2/m2)C+Cs/m2+Es/m2^+^2FM 

+3£<tF2(SAC/fn2)+#2FM(4AC/in2) - iPF^AC/ni2); (B6) 

( 4 m 2 / M 2 ) P F 3 = - F 2 F ^ 
-FGF2lS(B~2D)(4:+M2/m2-Cd2/m2~s/2m2-Es/m2)+S(Cd2/2m 
X ( C ~ 2 C 2 + 2 £ C - £ + 2 ^ / d 2 ) ] - G 2 / ^ 
-32D(l-(M2/4m2))^+G2F2S(B-2D)[(l-4tC)(2+M2/2m2-
+F3GF 2 [32(B-2D)+16(E+0-^^ 
- G r c F 2 [ 3 2 ( # - 2 D ) + 1 6 ^ 
-GtfFM16(£-4£)+G<fF232(£~2Z^ 

~ 0 C ^ 2 3 2 ( J 5 ~ 2 Z ) ) + ^ 2 F M 3 2 J 9 + ^ 2 F 2 1 6 ( ^ - 2 Z ) ) . (B7) 
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Finally, to obtain more manageable expressions we 
retain only the leading terms in the following sense. 
Examination of the structure of (B5)-(B7) reveals that 
they are essentially sums of products of the d-N in
variants F, G, 3C, and £f multiplied by monomials in 
s/4:M2, rj/4:M2, rj/4:M2. Since these variables are very 
small in the anomalous region where the d-N invariants 
are large (i.e., for s< 100 ju2) and become large only when 
the s is large and the d-N invariants are small, it is 
appropriate to regard these variables as second order 
compared with unity. In addition, examination of the 
exact imaginary parts above the normal threshold sug
gests that these polynomials do not grow as one might 
expect, but are cancelled out to a large extent. A notable 
example of this is that the singularity in s at 4M2 which 
is suggested by the d~2 terms does not seem to be present 
in the (correct) discontinuities above the normal thresh
old. In any case we do not wish to become embroiled in 
these details, but simply to observe that to treat these 
as second order variables seems to be a justifiable 
approximation. 

Now, examination of the d-N invariants (Sec. 4) 
shows us that the G invariant is about 20 times as large 
as the F, JC, and £ invariants, which are all about the 
same size. 

Our approximation to retain only leading terms can 
now be precisely stated. We will retain only zeroth-order 
monomials (constants) in terms which do not involve G, 
up to first-order monomials in terms linear in G, and up 

Finally, one obtains the results (3.22) by forming the 
combinations Gc, GM, and GQ [cf. Eq. (1.8)]. However, 
retaining only the leading terms means that the com
binations we form in fact are 

Wc=Wi-(s/24*n*)Wz, 
WM=W2, (BIO) 

WQ=W1-W2+W3. 

To maintain our leading term approximation consis
tently we drop the terms involving G from W\ and W2 

in WQ, while in Wc we drop from Wz the terms in
volving products of F, 3C, and 6. Finally we emerge 
with Eqs. (3.22). 

At this point we make a few additional technical 
remarks. 

First, we would like to point out that the precise form 

to second-order monomials in terms quadratic in G. We 
have followed the same procedure with regard to the 
deuteron binding energy; a2 is regarded as a second-order 
term and is thus handled in the same way as s, TJ and rj. 
Note that in Wi and W2 there are only terms of the form 
F2, FGs, and G2s2 (or smaller) and none of the form 
FG, G2, or G2s (where F here represents F, 3C, or # and s 
represents s, t\, rj, or a2). In Wz, however, the FG and 
G2s terms are present. Hence we will retain in W\ and 
W2 only terms of the form F2, FGs, and G2s2, while in 
Wz we will retain F2, FG, and G2s. If our approximations 
are correct, we would expect Wz to be large and domi
nated by the G terms. This is in fact the case, and we 
could have neglected the F2 terms in Wz without altering 
our results significantly. 

Hence, to obtain these simplified expressions we intro
duce rj and r) pEq. (3.19a)] and make the approximations: 

M2^4:m2-^a2, 

E=-(v-fl)/s, 

C^(l/d2) [km,2- (77+rj) - 2a2], 

A^-(m2/2sd2)ls2-Ss(v+7j)+16(7]--fi)
2']i (B8) 

&*- Ml+*(v+v)/s--nv-v)2/s2), 
D9=L\B, 

FC==FM—F2. 

Substituting these expressions into the equations (B5)-
(B7) yields 

of the invariants 9 a n ( i & was chosen to make the ex
pressions (3.22) agree as closely as possible with the 
potential theory results (2.23). We have said more about 
the significance of this step in Sec. 3 and Appendix C. 
At the moment, all we wish to observe is that there is a 
slight arbitrariness in our choice of 9 which is not present 
in our choice of 5\ This is because we may add a number 
of terms linear in F, 5C, and # to G (to form 9) without 
changing the expressions WG and WM, because terms 
of this type have been neglected in Wc and WM. Hence 
our only way of deciding which combination to take for 
9 is to examine GQ and make this agree as nearly as 
possible with the GQ of Sec. 2. But it is impossible to 
find any 9 which will put both expressions in exactly 
the same form, and hence it is somewhat arbitrary as to 
what g we choose. The 9 we have chosen [Eq. (3.21a)] 

W^FcliF+^y-iF+^GilA/m^-G^A/Sm^is-Airj+fj))}, 

W2^Fc{-G2{A/%m*)(s-±(ri+r)))}+2FM{(F+^ 
X(R2(97-^)A)~(FG/32m2)(^-16)7-8^-16(77

2-772)A)+G£r(^/m2) 
+ (G5C/32w2)(^-877~16r7+16(7?

2-^2)A)+G2U/8m4)(^-2()?+^)}, (B9) 
WmFc{-F2{%B+2)+{FG+WG-WF)(l6B+2+%(T)-

+FM{2F2+FW(16B+2-8(v-rj)/s)--(F3+W4--<!2)16B}, 

= FCWZC+FMWZM-
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has the property that it makes the relativistic correc- which is necessary if we are to write unsubtracted dis-
tions to the quadrupole moment quite small. persion relations for Dc, and DQ

C'M [cf. Eq. (BIO)]. 
Finally, we would like to observe that That this is so can be seen using the integrals intro

duced in Eq. (2.19). We must show that 
- o o d s - o o -co 

/ drj drj s*B;s*+4:(ri-r))s2 

are polynomials of type Q, while 

^1/2-^1/2 \WiC-M(s,ri,fj) = 0- (Blla) s2BZs-4c(r)+7j)'] 
is a polynomial of type P. This can be readily demon-

regardless of the detailed structure of the d-N in- strated, however, and we will not do it here. 
variants provided only that the A conditions (3.34) are 
satisfied. If we write Gz=FcDzc+FMDsM this is the APPENDIX C 
condition that j n ^ jg Appendix we establish the uniqueness of the 

S- and Z)-state wave functions in the following precise 

/ " 
•/16a2 

lmDz
c*M(s)ds=0, (Bllb) s e n s e -

Theorem. Regard DM
c(s) as a functional of g: 

1 /-00 ds' 1 r°° /-00 r s 
DM

c{g,s}=- — — di, dfjO -
TrJl6a2Sr~ SSfl12 J a* J a2 L 

_ r / l / 2 _ ^ l / 2 \g(v)g(v) 
l r00 ds' l r r00 

i f j 6 \ -
2 

X [ / 2 - 1 2 / ( 7 ? + ^ ) + 4 8 ( 7 7
2 + 7 7 2 ) + 3 2 ^ - 6 4 ( ) 7 - 9 7 ) 2 ^ + ^ ) A , ] J (CI) 

and similarily Dc{f,g; s) functional of / and g. Further suppose that 
/•GO 

f(l)dv= g(v)dv=0. (C2) [ f(i)dv= f 
J a2 J a 

Now suppose that we have two pairs of functions fi, gi and f^ gi such that 

Dc{fi,gi,s) = Dc{fagi,s) DM
c{ghs) = DM

c{g*,s) (C3) 

for all s and each pair satisfies (C2). Then it is true that 

/ l = ± / 2 g l = ± « 2 v (C4) 

Proof. I t is straightforward to show by integration by parts that 

1 r ds' 1 r00 r°° rsn/2 n/ 3 n \ / 3 n \ 
DMC{g)s}=~\ — — / dn df}d\ v^-vm \[vgM+- g(x)dx)[fjg(fi)+- g(y)dy) 

TrJua*s'-ss'1/2Ja> )*> L 2 J \ 2Ja* A 2Ja* / 
X ( ( 1 6 ) 2 / 3 ) { P o ( 2 ( 7 ?

1 / 2 + ^ l / 2 ) / 5 l / 2 ) _ p 2 ( 2 ( ) 7 l / 2 + ^ l / 2 ) ^ l / 2 ) } ? ( C 5 ) 

where Pw is the Legendre polynomial of order n. Now, by applying (2.11), we obtain 

(16)2 r r" r / 3 n \ / 3 n \ 
DMC{g,s)= / drj ^ dvj 2 dfj exp[~(vm+v1/2)rl{vg(v)+- I j(x)dx)[vjg(fi)+- / j(y)dy) 

X[io(^ 1 / V/2)+i 2 (^ 1 / V/2)] . (C6) 
Hence 

(16)2 r r00 r00 

DM
c{gus}-DM

c{g2;s}= / dr drj drj e x p [ - ( V / 2 + ^ 1 / 2 > ] 
3 T J o J a2 Joe2 

Xx+(v)x-(v)lJo(smr/2)+j2(sV*r/2)l=0, (C7) 

where 
3 n 

X±(v):=v(gi±g2)+- / CgiW=bg2(«)]^. 
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The theorem will be proved for the g's if we can show 
that either %+ or %~ must be zero. This is because x± ==0 
implies that faf [_g(%)±g2(x)~]dx is a solution of a first 
order differential equation which is zero at 77 = a2 and 
hence 

/ [gi(x)zLg2(x)2dx=0 
J a* 

and ^i(^) = dbg2(^). Then an identical but algebracially 
simpler argument would give us the result for the f's. 

To see that x + o r X~ is zero we observe that 

jo(oo)+j2(x) = - (3/x)j\(x) 

and recalling the completeness of the Bessel functions 
ji(x) we have immediately 

/ ^ [ e x p ( - ~ - ^ V ) ] x + M / ^ [ e x p ( - f l 1 ^ ) ] x - ( f l ) = 0, 
J a2 Jo? 

which implies that for either x + or x~ 

^ [ e x p ( - V / V ) ] x W = 0. 

Taking successive derivatives at the origin implies 

J a2 

F 
for all integral n. Hence, x(^) = 0j and the uniqueness 
is proved. 

APPENDIX D 

In this Appendix we list the angular integral identities 
sufficient to obtain the results (4.6) from (4.5). These are 

d$Q=aN+bp, 
1 r 2 7 r 

2w J 0 

1 r2T 

- / d<l>Qa=(a-b)Na 

lir J 0 2T 

IT Jo 

(Dl) 

(D2) 

(D3) 

2TT 
d(t>QaQ=fi2cya+dNaN+eNap, 

where 

a=(fx2+2N0Qo)/2N2, 

b=(Qo-Noa)/u1/2
y 

c=(N2a2-Q2)/2^2, 

d= (l+No/u1/2)(a2+u,2c/N2) - (Qo/ul/2)a, 

e= - (N0/u
1/2)d+Cfx2/u-Qo2/u 

+ (Q0a/u^2)(l+No/u^2).i 

and 

N0= -(l/2u1/2)(u+m2~M2), 

Qo=(l/2u1/2)(u+fx2-m2), 

Q2= ( l / 4 w ) [ « - ( w + / x ) 2 ] [ ^ - ( W - M ) 2 ] , 

N2= (l/4u)£u- (M+M)2JU- {m-M)2~]. 

APPENDIX E 

The following errata have been found in Ref. 1: 
1. In Eq. (2.1) the sign of the term ( A ^ - A a 2 ) 2 ^ 2 

should be changed to be positive. 
2. In the discussion immediately following Eq. (3.3) 

the sentence "The variable zv is the cosine of the angle 
on which v depends, and the angles are defined so that 
this integration is always in the rest system of the virtual 
particle which corresponds to v" should be changed to 
read: "The variable zv is the cosine of the angle on which 
v depends, and the angles are always defined so that 
this integration is in the center of mass system of the 
a and c particles on which v depends." 

3. In Eq. (3.6) on the right-hand side the v should 
bev1/2. 

4. In Eq. (3.7) a T0 was omitted from the second 
term. 

5. In Eq. (3.13) the factor (27r)2 should be replaced 
by 2TT2. 

6. In Eq. (3.17) the quantity f2—gf in the denomina
tor of the arctan should be replaced by f2— \g'\. 

7. The theorem in the Appendix is stated too generally 
to follow from the proof given. We wish to change it to 
a less general form which is sufficient to include all of 
the cases treated in I and in this apper. To this end we 
require that f(s) and [g(s)]1 /2 be real analytic functions, 
and that there exist no So such that /(s0) = g(so) = 0. In 
addition we require that all si such that p(si) = ± 1 are 
real. I t can be shown that the cases treated in I (for 
suitable choices of M) satisfy these conditions, which are 
sufficient to allow us to conclude that all of the singu
larities are on the real s axis, and to exclude the trouble
some special case when g=/==0. Then we may choose 
our cuts to lie on the real 5 axis, and the rest of the 
proof given in I follows in a straightforward manner. 


